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David E. Lilienthal
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Inherently Safe Reactors
and a Second Nuclear Era

Alvin M. Weinberg and Irving Spiewak

David Lilienthal, in his book Atomic
Energy, A New Start (1), was among the
first to call upon nuclear technologists to
design a reactor that was inherently safe.
He saw such a device as being necessary
for a new start in atomic energy. Without
Lilienthal

such a forgiving reactor.
doubted t
the public
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enough fo
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thal to call for an inherently safe reactor,
but that the fundamental characteristics
of the fission process, in particular the
afterheat, made such a goal all but unat-
tainable (2).

Nevertheless, in May of 1980, the In-
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P. Cohen of Westinghouse, J. Dietrich of
Combustion Engineering, M. Edlund of
Babcock and Wilcox, P. Fortescue of
General Atomic, K. Davis. then of Bech-
tel and later deputy secretary of energy,
H. Kendrick of Department of Energy,
U. Gat of Oak Ridge National Labora-
tory, and H. G. MacPherson, J. A. Lane,
E. P. Epler, M. W. Firebaugh, and the
authors, associated with the Institute it-
self. g
We concluded that a serious study of
more forgiving, or perhaps even inher-
ently safe, reactors was a good idea, but
the study would have to begin by assess-
ing the safety of existing light-water re-
actors and of incremental improvements
to light-water reactors (3). Most of the
participants in the workshop believed
that such a reexamination would confirm
“bo saete vt yiew that light-water
afe as any reactors that
onomically with them.
e Andrew W. Mellon
:d the Institute for En-

s director of the Institute for
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formerly section head in the
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e Mechanical wedging Mellon Fellow at the Institute
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8. Fuel loading

7. Pipe assembly
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13. Surface cooler
14. Insufation

Modular HTR reactor 1
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Modular HTR Reactor

Block type
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«<— Cooling panel—
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Pebble bed type

€& Heat flow at accident

14



45 (Super Safe, Small and Simple)

PR RE

BRARLT

$Fi>

R&&

15



ooled Long-Life
'@ Simple Small
nble Proliferation-
jtant Reactor

Main Design Parameters

Reactor Thermal Output 150 MWt
Reactor Electric Output 53 MWe
Reactor Outlet Temperature 510 °C
Reacot Inlet Temperature 360 °C
Reactor Vessel Diameter 52 m
Reacor Vessel Height 152 m
Core Barrel Diameter 34 m
Type of Steam Generator  Serpentine Tube
No. of Steam Generators 2 unit
Type of Pump Centrifuge Pump
No. of Circulating Pump 2 unit
Total Pressure Drop 0.7 kg/cm2
Pb-Bi Coolant Flow Rate 12300 ton/hr
Pb—Bi Coolant Core Velocity 09 m/s
Feed Water Temperature 210 °C
Feed Water Flow Rate 294 ton/hr
SG Outlet Steam Temperatu 280 °C

SG Outlet Steam Pressure 6.47 MPa
Turbine Efficiency 35 %

16
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INYRE RS
MUFER== International Specialists’ Meeting on

S R /T I T Potential of Small Nuclear Reactors for
Future Clean and Safe Energy Sources
Tokyo, Japan, 23-25 October, 1991

ditor

Water Cooled Reactors

e SPWR, TRIGA-PS, DHR, MRX, DRX
REL'J*S;;“S Gas Cooled Reactors

CLEAN MHTGR, Peu-a-Peu, CNPS

and

SAFE

ENERGY Fast Reactors

SOURCES

IFR, 45, LSPR

Other Reactors
(mini)FUJI, Fluidized-Bed

ELSEVIER

19
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* PWR: pressurized water reactor
BWR: boiling water reactor
HTR: high-temperature reactor
FNR: fast neutron reactor
FHR: Flibe cooled HTR
MSR: molten salt reactor

Name Capacity Type* | Developer

CAREM 27-100 MWe PWR CNEA + INVAP, Argentina
MRX 30-100 MWe PWR JAERI, Japan

KLT-40S 35 MWe PWR OKBM, Russia

NuScale 45 MWe PWR NuScale Power + Fluor, USA
Flexblue 50-250 MWe PWR Areva TA, France

SMART 100 MWe PWR KAERI, South Korea
ACP100 100 MWe PWR CNNC + Guodian, China
NP-300 100-300 MWe PWR Areva TA, France

IRIS 100-335 MWe PWR Westinghouse-led, international
mPower 150-180 MWe PWR B&W + Bechtel, USA
SMR-160 160 MWe PWR Holtec, USA

Westinghouse SMR 225 MWe PWR Westinghouse, USA

VK-300 300 MWe BWR Atomenergoproekt, Russia
PBMR 165 MWe HTR Escom, South Africa, et al.
HTR-PM 2x100 MWe HTR INET + HSNPC, China
SC-HTGR (Antares) 250 MWe HTR Areva, France

GT-MHR 285 MWe HTR GA + Minatom, USA-Russia
4S 10-50 MWe FNR Toshiba, Japan

SVBR 10-100 MWe FNR AKME (Rosatom), Russia
Hyperion Power Module | 25 MWe FNR Hyperion Pwr Gen, USA
LSPR, PBWFR 50-150 MWe FNR TokyoTech, Japan

ALFRED 120-600 MWe FNR Ansaldo, Italy

EM’ 240 MWe FNR GA, USA

BREST 300 MWe FNR RDIPE, Russia

S-PRISM 311 MWe FNR GE-Hitachi, USA

PB-AHTR 410 MWe FHR MIT + UCB + UWM, USA
FUJI, miniFUJI 10, 100-200 MWe | MSR IThEMS, Japan-Russia-USA
IMSR 45 MWe MSR Terrestrial Energy, USA 20




Some of the Present Small LWRs

Steam line

Pressurizer
Feedwater line

— Containment
Reactor vessel

Reactor vessel

Steam generator .
Pressurizer

Support trunnion
Hot leg riser
Steam generator

Coolant pump

MNuclear core

Core

gg Reactor !‘Hmula support

ECCS
Pressurizer accumulator

KLT-40S Westinghouse SMR NuScale 21



Some of the Present Small FR
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Control rods system drivers

Main circulation pump

Steam generator

Reactor vessel

Core
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