

核医学・核工学シンポジウム「がんを制する人工核種をつくる」 ~ 内用療法向け α 放出核種生成技術の最前線~

電子線形加速器を利用したAc-225の製造

田所孝広

(株)日立製作所 研究開発グループ 脱炭素エネルギーイノベーションセンタ

© Hitachi, Ltd. 2021. All rights reserved.

- 1. 背景
- 2. 電子線形加速器利用の医療用核種製造
- 3. Ac-225製造基礎試験
- 4. Ac-225製造シミュレーション
- 5. 基礎試験結果
- 6. 実規模想定システムにおけるAc-225製造量評価
- 7. まとめ

1

欧米を中心に、TAT用の主要核種であるAc-225を用いた臨床利用が進展中

E	オーストラリア	スイス ポーラント	米国	米国	ドイツ 南アフリカ	スウェーデン	フランス	ドイツ オランダ
治療 対象	メラノーマ (P. I)	ク [・] リオーマ (P. I)	白血病 (P. I / II)	乳カン	前立腺 ガン	卵巣ガン	多発性 骨髄腫	神経内分泌腫 瘍

2

世界で3つの施設がTh-229の崩壊により製造

- •JRC Karlsruhe:Germany
- •ONL (Oak Ridge National Lab) :USA

• IPPE (Institute of Physics and Power Engineering) : Russia

3つの施設を合わせても 年間100GBq以下の製造量

Ac-225を用いた治療が本格的に実施された場合、供給不足が予想されており、加速器を利用した 製造が望まれている。

■ U-233の崩壊における主な生成核種

安定同位体 (1.9×10¹⁹year)

© Hitachi, Ltd. 2021. All rights reserved.

15~20MeV程度に大きな反応断面積を持つ

100

10

%1 Nucl Instr Meth B155 (1999) p373

光子エネルギー

[MeV]

4

2. 電子線形加速器利用の医療用核種製造 - 制動放射線(光子)の生成 -

加速した電子ビームを物質に照射すると制動放射線(光子)が生成する。

%2 <u>Particle and Heavy Ion Transport code System http://phits.jaea.go.jp/indexj.html</u>

5

2. 電子線形加速器利用の医療用核種製造 - 核種製造 -

加速した電子ビームを制動放射線発生用ターゲットに照射

- → 制動放射線が生成
- → 生成した制動放射線を原料核種に照射
- → 原料核種が光核反応を起こすことで核種製造

原料核種を変えることで、 いろいろな核種を製造可能

			原料核種	製造核種
制動放射線 発生用ターゲット		中性子または陽子	Mo-100	Mo-99/Tc-99m
		1	Zn-68	Cu-67
電子ビーム	原料核種 /		Ge-70	Ge-68/Ga-68
制動放射線			Hf-178	Lu-177
		製造核種	Ra-226	Ra-225/Ac-225

2. 電子線形加速器利用の医療用核種製造 - Ac-225の製造反応 -

HITACHI

Inspire the Next

HITACHI

Inspire the Next

<u>Ra-226と制動放射線との反応</u> Ac-225以外のAcが製造されない

半減期14.9日、β-崩壊(100%)

Ra-226 (γ,p) Fr-225 → Ra-225 → Ac-225 →

半減期3.95分、β-崩壊(100%)

 $Ra-226 (\gamma, 2n) Ra-224 \rightarrow Rn-220 \rightarrow$

半減期3.66日、α崩壊(100%)

Ra-226 (γ,pn) Fr-224 → Ra-224 → Rn-220 → 半減期2.67分、β⁻崩壊(100%) 2. 電子線形加速器利用の医療用核種製造 - 特徴③制動放射線は高透過率 - HITACHI

制動放射線は、透過率が高い → 原料核種の厚さを厚くできる → 原料の増量化が容易

Ra-226

原料核種部分のコンパクト化
→ 遮蔽のコンパクト化
→ 放射化部分が少ない

Ra-226

Ra-226は、崩壊してRn-222を生成する。

(Rn-222の封じ込め、処理が必要)

電子線形加速器を利用したAc-225製造の実機模想定システム設計検討のための基礎データ収集。

・エネルギー依存性試験。

- → 反応断面積の理論計算値を用いたシミュレーション値との比較。
- ・分離精製によるAc-225回収率の測定。
 - → 不純物核種の評価と最終的に回収可能なAc-225量の評価。

・スケールアップ試験を計画。

→ 基礎試験(50kBq)の1,000倍のRa-226原料(50MBq)

最終的に、上記結果をもとに、実機模想定システムを設計検討予定。

NPL (英国物理学研究所)から、 200kBqのRa-226を購入 (40kBq/g, 5g, 1N HCI溶液)

東北大学電子光理学 研究センターにおいて、 照射試料作製 (石英容器に封入、 蒸発乾固)

試料番号	重量 [g]	放射能 [kBq]
1	1.247	50.0
2	1.244	49.9
3	1.211	48.6
4	1.224	49.1

HIT	AC	ы
Inspire	the	Next

	エネルキ [*] ー [MeV]	33.3	38.9	44.4
電子線	平均電流 [µA]	138.8	125.7	157.9
	垂直方向径 [FWHM-mm]	6.1	4.6	2.8
	水平方向径 [FWHM-mm]	7.1	5.8	3.1
	照射時間 [hr]	6.0	5.95	6.0
Ra−226∙Cl ₂ [kBq]		48.6	49.9	49.1
試料−制動放射線発生位置間距離 [mm]		26.0	26.5	26.4

3. Ac-225製造基礎試験 - 電子線電流値及び形状の一例 -

50

n

List Save... More »

100

×

<u>電子線電流値の時刻変化</u>

平均電子ビーム電流値: 157.9μΑ

垂直方向 © Hitachi, Ltd. 2021. All rights reserved. 17

150

市販(Eichrom社製)のDGAレジンとSrレジンを組合わせた既存の手法で分離精製

モンテカルロシミュレーションコート[・]PHITS^{※2}を用いて計算したRa-226・Cl₂原料中の制動放射線のエネルギー毎の フラックス分布と反応断面積の理論計算値を用いて導出

E_Y :制動放射線エネルキー [MeV]

- dV :制動放射線が照射されるRa-226の体積[cm³]
- dN_{Ra-226}:単位体積あたりのRa-226の原子数 [n/cm³]
- T_{Ra-225} : Ra-225の半減期 [14.8 [d]]

%2 Particle and Heavy Ion Transport code System http://phits.jaea.go.jp/indexj.html

製造されたRa-225のβ-崩壊により、Ac-225が製造され、それぞれ半減期に従って減少

 $RN_{Ra-225}(t_{n}) = RN_{Ra-225}(t_{n-1}) \times exp(-\lambda_{Ra-225} \cdot \Delta t) + PN_{R-225}(t_{n-1}) \times \Delta t$

RN_{Ra-225} (t_n) : Ra-225の時刻t_nにおける製造量 [Bq] (PN_{Ra-225} (0) = 0) λ_{Ra-225} : Ra-225の崩壊定数(= ln2 / T_{Ra-225} (T_{Ra-225} = 14.8 [日]))

 $PN_{R-225}(t_n)$: Ra-225の時刻 t_n における製造率 [Bq/秒]

$$N_{Ac-225}(t_n) = N_{Ac-225}(t_{n-1}) + RN_{Ra-225}(t_{n-1}) \cdot \Delta t - N_{Ac-225}(t_{n-1}) \cdot (1 - 2^{-(\Delta t/T_{Ac-225})})$$

 $RN_{Ac-225}(t_n) = N_{Ac-225}(t_n) \times \lambda_{Ac-225}$

 $N_{Ac-225}(t_n)$: Ac-225の時刻 t_n における製造量 [個] $RN_{Ac-225}(t_n)$: Ac-225の時刻 t_n における製造量 [Bq] $(N_{Ac-225}(0) = 0)$ λ_{Ac-225} : Ac-225の崩壊定数(= ln2 / $T_{Ac-225}(T_{Ac-225} = 10[日]))$ Ra-225は、照射とともに増加し、照射終了時に最大量763.8Bqとなり、その後、半減期に従って減少。 Ac-225は、照射停止後も増加し、421.6時間後に最大量339.5Bqとなる。

HITACHI Inspire the Next

Ac-225製造量の実験値は、シミュレーション値の1.12~1.49倍で、電子線エネルギーが高いほど、 増加の割合が小さい。

分離精製後のAc-225の回収率は、0.72~0.80。

電子線 エネルキー [MeV]	Ac-225製造量[Bq]			Ac-225回収量[Bq]		
	実験値 (A) ^{※1}	シミュレーション値(B)※2	A/B **2	測定値 (C) ^{※3}	C/A	
33.3	234.2	156.7	1.49	168.7	0.72	
38.9	272.8	196.0	1.39	196.5	0.72	
44.4	379.6	339.5	1.12	303.1	0.80	

※1 分離精製前のBi-213の測定結果から,放射平衡を仮定して導出。Ac-225の半減期を考慮し、Ac-225が最大となる時刻での値。

- ※2 Ac-225の半減期を考慮し、Ac-225が最大となる時刻で比較。
- ※3 分離精製後のBi-213の測定結果から、放射平衡を仮定して導出。

20時間の照射により、照射開始から428時間後に、51.5GBqのAc-225が製造

<u>評価条件</u>

・電子線形加速器

6. 実機模想定システムにおけるAc-225製造量評価例 - ミルキングの一例 -

© Hitachi, Ltd. 2021. All rights reserved. 26

HITACHI 6. 実機模想定システムにおけるAc-225製造量評価例 - 液体原料使用の一例 -**Inspire the Next**

液体原料への照射により、照射開始から425時間後に、1.2GBqのAc-225が製造

(溶液照射することで、Ra-225/226とAc-225の分離工程が簡素にできる可能性がある。)

電子線形加速器を利用した医療用核種製造方法は、さまざまな利点を有する。 近年、TAT (Targeted Alpha Therapy)用核種として注目されている Ac-225製造に関して、基礎実験及びシミュレーションにより検討し、 大量製造の可能性を示した。

今後、スケールアップ試験、及び、Ac-225の純度や標識率の評価を進める。

本内容は、東北大学、及び、京都大学との共同研究において実施した内容で、 下記の方々のご協力のもと実施したものです。

東北大学 電子光理学研究センター菊永英寿様 柏木茂様東北大学 金属材料研究所白崎謙次様京都大学 複合原子力科学研究所大槻勤様 関本俊様 稲垣誠様(株)日立製作所 ライフ事業統括本部渡辺敬仁 佐々木貴裕 伊藤雅春 島田真生子(株)日立製作所 研究開発グループ上野雄一郎 西田賢人 前田瑞穂 可児祐子