

核医学・核工学シンポジウム「がんを制する人工核種をつくる」 ~内用療法向けα放出核種生成技術の最前線~

電子線形加速器を利用したAc-225の製造

田所孝広

(株)日立製作所 研究開発グループ 脱炭素エネルギーイノベーションセンタ

2021年5月26日

内容

- 1. 背景
- 2. 電子線形加速器利用の医療用核種製造
- 3. Ac-225製造基礎試験
- 4. Ac-225製造シミュレーション
- 5. 基礎試験結果
- 6. 実規模想定システムにおけるAc-225製造量評価
- 7. まとめ

1. 背景 - Targeted Alpha Therapy (TAT) の現状 -

欧米を中心に、TAT用の主要核種であるAc-225を用いた臨床利用が進展中

国	オーストラリア	スイス ホ'ーラント'	米国	米国	ドイツ 南アフリカ	スウェーデン	フランス	ト・イツ オランタ・
治療 対象	メラノーマ (P. I)	ク'リオーマ (P. I)	白血病 (P. I / II)	乳ガン	前立腺がン	卵巣がン	多発性 骨髄腫	神経内分泌腫 瘍

治療結果の一例

去勢抵抗性転移性前立腺がんの患者に対して、PSMAにAc-225を標識した薬剤を使用。 4回の投与により、完全奏功 (PSA陰性)を確認※。

Kratochwil et al., J Nucl Med. 2016, 57, p1941-1944

1. 背景 - Ac-225製造の現状 -

世界で3つの施設がTh-229の崩壊により製造

• JRC Karlsruhe: Germany

•ONL (Oak Ridge National Lab): USA

• IPPE (Institute of Physics and Power Engineering): Russia

3つの施設を合わせても

年間100GBq以下の製造量

Ac-225を用いた治療が本格的に実施された場合、供給不足が予想されており、加速器を利用した製造が望まれている。

■ U-233の崩壊における主な生成核種

2. 電子線形加速器利用の医療用核種製造 - 光子と原子核との反応※1 -

15~20MeV程度に大きな反応断面積を持つ

核子の結合エネルギー(~7MeV)を超える 光子を照射すると核子の放出反応が起こる

%1 Nucl Instr Meth B155 (1999) p373

2. 電子線形加速器利用の医療用核種製造 - 制動放射線(光子)の生成 -

加速した電子ビームを物質に照射すると制動放射線(光子)が生成する。

制動放射線スペクトルの一例(PHITS※2を用いた計算結果)

***2** Particle and Heavy Ion Transport code System http://phits.jaea.go.jp/indexj.html

2. 電子線形加速器利用の医療用核種製造 - 核種製造 -

加速した電子ビームを制動放射線発生用ターゲットに照射

- → 制動放射線が生成
- → 生成した制動放射線を原料核種に照射
- → 原料核種が光核反応を起こすことで核種製造

原料核種	製造核種		
Mo-100	Mo-99/Tc-99m		
Zn-68	Cu-67		
Ge-70	Ge-68/Ga-68		
Hf-178	Lu-177		
Ra-226	Ra-225/Ac-225		

2. 電子線形加速器利用の医療用核種製造 - Ac-225の製造反応 -

Ra-226 (原料核種) への制動放射線の照射により、 中性子を1個生成する反応により、Ra-225を製造

$$Ra-226 + \gamma \rightarrow Ra-225 + n$$

Ac-225は、Ra-225のβ-崩壊(半減期14.8日)により生成

Ra-225
$$\rightarrow$$
 Ac-225 + β^- + ν_e

$$\beta^-$$
Ra-225 Ac-225 ν_e

2. 電子線形加速器利用の医療用核種製造 - 特徴① 高安全性 -

2. 電子線形加速器利用の医療用核種製造 - 特徴② 不純物核種が無い -

Ra-226と制動放射線との反応

Ac-225以外のAcが製造されない

2. 電子線形加速器利用の医療用核種製造 - 特徴③ 制動放射線は高透過率 -

制動放射線は、透過率が高い

- → 原料核種の厚さを厚くできる
- → 原料の増量化が容易

原料核種部分のコンパクト化

- → 遮蔽のコンパクト化
- → 放射化部分が少ない

Ra-226

Ra-226

2. 電子線形加速器利用の医療用核種製造 - 特徴④ 原料の強固な封入可 -

制動放射線は、透過率が高い

- → 原料核種の厚さを厚くできる
- → 原料の強固な封入可

熱負荷の大部分を 真空外の制動放射線発生用ターゲットが受け、 原料に与える熱負荷が少ない

→ 液体原料の使用可

Ra-226は、崩壊してRn-222を生成する。

(Rn-222の封じ込め、処理が必要)

3. Ac-225製造基礎試験

電子線形加速器を利用したAc-225製造の実機模想定システム設計検討のための基礎データ収集。

- ・エネルギー依存性試験。
 - → 反応断面積の理論計算値を用いたシミュレーション値との比較。
- ・分離精製によるAc-225回収率の測定。
 - → 不純物核種の評価と最終的に回収可能なAc-225量の評価。
- ・スケールアップ試験を計画。
 - → 基礎試験(50kBq)の1,000倍のRa-226原料(50MBq)

最終的に、上記結果をもとに、実機模想定システムを設計検討予定。

3. Ac-225製造基礎試験 - Ra-226原料及び試料作製 -

NPL (英国物理学研究所) から、 200kBqのRa-226を購入 (40kBq/g, 5g, 1N HCI溶液)

東北大学電子光理学 研究センターにおいて、 照射試料作製 (石英容器に封入、 蒸発乾固)

試料番号	重量 [g]	放射能 [kBq]		
1	1.247	50.0		
2	1.244	49.9		
3	1.211	48.6		
4	1.224	49.1		

3. Ac-225製造基礎試験 - 照射製造試験体系 -

3. Ac-225製造基礎試験 - 試験条件まとめ -

	エネルキ゛ー [MeV]	33.3	38.9	44.4
	平均電流[μA]	138.8	125.7	157.9
電子線	垂直方向径 [FWHM-mm]	6.1	4.6	2.8
	水平方向径 [FWHM-mm]	7.1	5.8	3.1
	照射時間 [hr]	6.0	5.95	6.0
	Ra-226·Cl ₂ [kBq]		49.9	49.1
試料-#	試料-制動放射線発生位置間距離 [mm]		26.5	26.4

3. Ac-225製造基礎試験 - 試験の様子 -

3. Ac-225製造基礎試験 - 電子線電流値及び形状の一例 -

電子線電流値の時刻変化

電子線の形状

垂直方向

3. Ac-225製造基礎試験 - Ac-225の分離精製工程 -

市販(Eichrom社製)のDGAレジンとSrレジンを組合わせた既存の手法で分離精製

Ac-225+子孫核種(Fr-221.Bi-213等)

3. Ac-225製造基礎試験 - γ線スペクトルの一例 -

3. Ac-225製造基礎試験 - α線スペクトルの一例 -

4. Ac-225製造量シミュレーション - Ra-225製造率 -

モンテカルロシミュレーションコート、PHITS^{※2} を用いて計算したRa-226・Cl₂原料中の制動放射線のエネルギー毎のフラックス分布と反応断面積の理論計算値を用いて導出

$$PN_{Ra-225} = 0.693 / T_{Ra-225} \cdot \int dN_{Ra-226} \cdot (\varphi(E_{\gamma}, dV) \cdot \sigma(E_{\gamma}, dV)) dE_{\gamma} dV$$

PHITSによる 反応断面積の

計算値を使用 理論計算値を利用

PN_{Ra-225}: Ra-225製造率 [Bq/s]

E、 : 制動放射線エネルキー [MeV]

dV : 制動放射線が照射されるRa-226の体積 [cm³]

dN_{Ra-226} : 単位体積あたりのRa-226の原子数 [n/cm³]

T_{Ra-225} : Ra-225の半減期 [14.8 [d]]

<u>**2 Particle and Heavy Ion Transport code System http://phits.jaea.go.jp/indexj.html</u>

4. Ac-225製造量シミュレーション - Ac-225製造量 -

製造されたRa-225のβ-崩壊により、Ac-225が製造され、それぞれ半減期に従って減少

$$\mathsf{RN}_{\mathsf{Ra-225}}(\mathsf{t}_{\mathsf{n}}) = \mathsf{RN}_{\mathsf{Ra-225}}(\mathsf{t}_{\mathsf{n-1}}) imes \mathsf{exp}\,(-\lambda_{\mathsf{Ra-225}} \cdot \Delta \mathsf{t}) + \mathsf{PN}_{\mathsf{R-225}}(\mathsf{t}_{\mathsf{n-1}}) imes \Delta \mathsf{t}$$
 $\mathsf{RN}_{\mathsf{Ra-225}}(\mathsf{t}_{\mathsf{n}}) : \mathsf{Ra-225} \circ \mathsf{phylom}_{\mathsf{n}} \mathsf{lch} \mathsf{shylow}_{\mathsf{n}} \mathsf{lch} \mathsf{shylow}_{\mathsf{n}} \mathsf{lch} \mathsf{shylow}_{\mathsf{n}} \mathsf{lch} \mathsf{shylow}_{\mathsf{n}} \mathsf{lch} \mathsf{shylow}_{\mathsf{n}} \mathsf{lch} \mathsf{lh} \mathsf$

4. Ac-225製造量シミュレーション - 44.4MeVの結果例 -

Ra-225は、照射とともに増加し、照射終了時に最大量763.8Bqとなり、その後、半減期に従って減少。 Ac-225は、照射停止後も増加し、421.6時間後に最大量339.5Bqとなる。

5. 試験結果 - 実験値とシミュレーション値の比較 -

Ac-225製造量の実験値は、シミュレーション値の1.12~1.49倍で、電子線エネルギーが高いほど、増加の割合が小さい。

分離精製後のAc-225の回収率は、0.72~0.80。

電子線		Ac-225製造量 [Bq]	Ac-225回収量 [Bq]		
エネルキ'ー [MeV]	実験値(A) ^{※1}	シミュレーション 値 (B) ※2	A/B *2	測定値(C) **3	C/A
33.3	234.2	156.7	1.49	168.7	0.72
38.9	272.8	196.0	1.39	196.5	0.72
44.4	379.6	339.5	1.12	303.1	0.80

- ※1 分離精製前のBi-213の測定結果から,放射平衡を仮定して導出。Ac-225の半減期を考慮し、Ac-225が最大となる時刻での値。
- ※2 Ac-225の半減期を考慮し、Ac-225が最大となる時刻で比較。
- ※3 分離精製後のBi-213の測定結果から、放射平衡を仮定して導出。

6. 実機模想定システムにおけるAc-225製造量評価例

20時間の照射により、照射開始から428時間後に、51.5GBqのAc-225が製造

<u>評価条件</u>

・電子線形加速器

加速エネルキー: 35MeV

加速電流値 : 1mA

照射時間 : 20時間

・原料

Ra-226 : $10mm \phi \times 10mmt$

(Ra-226:4.33g)

6. 実機模想定システムにおけるAc-225製造量評価例 - ミルキングの一例 -

2ヶ月に1回(年間6回) 20時間照射/回の製造で、 年間83.9GBq×6 = 約500GBqの Ac-225を製造可能。

100kBq/kg/回として、 60kgの方の80,000回分以上。 (3回/人として、約27,000人分)

6. 実機模想定システムにおけるAc-225製造量評価例 - 液体原料使用の一例 -

液体原料への照射により、照射開始から425時間後に、1.2GBqのAc-225が製造

(溶液照射することで、Ra-225/226とAc-225の分離工程が簡素にできる可能性がある。)

<u>評価条件</u>

·電子線形加速器

加速エネルキー: 35MeV

加速電流値 : 1mA

照射時間 : 20時間

・原料

 $Ra-226 \cdot Cl_2$ 水溶液 : $10mm \phi \times 10mmt$

(Ra-226:0.112g)

電子線形加速器を利用した医療用核種製造方法は、さまざまな利点を有する。 近年、TAT (Targeted Alpha Therapy) 用核種として注目されている Ac-225製造に関して、基礎実験及びシミュレーションにより検討し、 大量製造の可能性を示した。

今後、スケールアップ試験、及び、Ac-225の純度や標識率の評価を進める。

本内容は、東北大学、及び、京都大学との共同研究において実施した内容で、下記の方々のご協力のもと実施したものです。

東北大学 電子光理学研究センター 東北大学 金属材料研究所 京都大学 複合原子力科学研究所 (株)日立製作所 ライフ事業統括本部 (株)日立製作所 研究開発グループ

南永英寿様 柏木茂様 白崎謙次様 大槻勤様 関本俊様 稲垣誠様 渡辺敬仁 佐々木貴裕 伊藤雅春 島田真生子 上野雄一郎 西田賢人 前田瑞穂 可児祐子

HITACHI Inspire the Next